	[bookmark: _GoBack]
Project Name :
	Academic Year :

	Subject Name:
	Semester : 4th

 A STYDY ON
 Study on Topic Name

 MICRO PROJECT REPORT
Submitted in March 2025 by the group of……3….students

	Sr. No
	Roll No (Sem-vi)
	Full name of Student
	Enrollment No
	Seat No (Sem-vi)

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

Under the Guidance of
 [your guide name]
in
Three Years Diploma Program in Engineering & Technology of Maharashtra State Board of Technical Education, Mumbai (Autonomous)
ISO 9001:2008 (ISO/IEC-27001:2013)
at

 [your college name]

[image:]

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION, MUMBAI

Certificate
This is to certify that Mr. /Mrs.	

Roll No: of Sixth Semester of	Diploma in Engineering & Technology at [your college name] , has completed the Micro Project satisfactorily in Subject Subject Name in the academic year 2024-2025 as per the MSBTE prescribed curriculum of I Scheme.

Place: Pune	Enrollment No: 	
Date:	/	/ 2025	Exam Seat No:		

Project Guide Head of the Department	Principal

 Head of Institute

 				
1

 INDEX

	Sr.
	 Title
	Page No .

	
	Abstract
	

	1.
	Introduction
	

	2.
	Literature Survey
	

	3.
	System Design
	

	4.
	Data Flow Diagram
	

	5.
	Use Case Diagram
	

	6.
	Testing and Evaluation
	

	7.
	Conclusions
	

	8.
	References
	

 Abstract

Communication plays a vital role in today’s fast-paced digital world. The Chat Application using Java Sockets is designed to provide a simple, efficient, and real-time messaging platform for two users over a local network. This project demonstrates the implementation of client-server architecture using Java Sockets, where messages are exchanged between two clients via a central server.
The chat application consists of three main components: Chat Server, Client 1, and Client 2. The server is responsible for handling incoming connections, managing message transfers, and ensuring smooth communication between the two clients. Each client has a separate Graphical User Interface (GUI) built using Java Swing, enabling users to send and receive messages in real time. When Client 1 sends a message, it is received by the server and then forwarded to Client 2, ensuring a one-to-one direct chat system.
The project leverages multithreading to handle multiple clients efficiently and enables full-duplex communication, allowing both clients to send and receive messages simultaneously. The GUI is designed for ease of use, providing a text area for displaying messages and an input field for typing responses. Error handling mechanisms are implemented to ensure smooth functioning, even in case of connection issues.
This project serves as an excellent demonstration of network programming in Java, offering insights into socket communication, multithreading, and GUI development. It can be further extended by adding features such as file sharing, message encryption, and multi-user support to enhance its usability. The Chat Application provides a fundamental understanding of real-time messaging systems, making it a valuable learning project for students and developers interested in network-based communication applications.

Introduction

In today’s digital era, instant communication has become an essential part of personal and professional interactions. Chat applications allow users to exchange messages in real time, making communication more efficient and accessible. This project, Chat Application using Java Sockets, is a simple yet effective demonstration of client-server communication using Java networking concepts. The project enables two clients to chat with each other through a central server, ensuring message delivery between them.
Purpose of the Project
The primary objective of this chat application is to provide a basic real-time messaging system that allows users to send and receive messages over a local network. It demonstrates fundamental concepts of socket programming, multithreading, and GUI development in Java. By implementing this project, students and developers can gain hands-on experience in network-based application development and understand how real-world messaging systems function.
How It Works
This chat application follows a client-server architecture, where a dedicated server acts as an intermediary between two clients. When a client sends a message, the server forwards the message to the other connected client, ensuring smooth communication. The application consists of three main components:
1. Chat Server – Manages connections and forwards messages between clients.
2. Client 1 – One of the users in the chat system with a dedicated GUI.
3. Client 2 – The second user in the chat system with a separate GUI.
Each client has an interactive Graphical User Interface (GUI) built using Java Swing, allowing users to input messages and view received messages in a chat window. The application utilizes multithreading to handle multiple connections simultaneously and ensures real-time two-way communication.
Key Features
· Real-time messaging between two clients.
· GUI-based chat interface using Java Swing.
· Socket programming for communication over a local network.
· Multithreading support to handle multiple clients efficiently.
· Server-based message transfer for secure and structured communication.
Scope and Applications
This project serves as an educational tool for learning network programming in Java and can be extended with additional features such as:
· Multi-user chat support for group conversations.
· File transfer to send documents, images, and other files.
· Message encryption for secure communication.
· Database integration to store chat history.
This chat application is a foundational step toward building advanced real-time communication systems like WhatsApp, Messenger, and Slack. It provides valuable insights into client-server interactions, making it an ideal project for students, developers, and networking enthusiasts.

Literature Survey

1. Overview of Chat Applications
Chat applications have evolved significantly over the years, from simple text-based messaging systems to feature-rich platforms that support multimedia sharing, voice/video calls, and encryption for security. The fundamental working of a chat system involves real-time data transmission between two or more users over a network. Various communication models such as client-server architecture and peer-to-peer (P2P) networking have been used to implement chat applications.
2. Existing Chat Application Technologies
Several technologies and protocols have been used for implementing chat applications, including:
2.1 Socket Programming in Java
Java provides built-in support for socket programming, allowing communication between devices over a network. The Java.net package includes classes such as:
· Socket – Used by clients to establish a connection with the server.
· ServerSocket – Used by the server to accept incoming client connections.
· DataInputStream and DataOutputStream – Used for reading and writing messages between clients and the server.
2.2 Multithreading for Concurrent Communication
Chat applications require simultaneous message exchanges, which is achieved using multithreading. Each connected client runs on a separate thread, ensuring real-time responsiveness. Java’s Thread class and Runnable interface are commonly used to implement multithreaded communication.
2.3 GUI Development using Java Swing
To make chat applications user-friendly, Graphical User Interfaces (GUIs) are created using Java Swing components such as:
· JFrame – Main window for the chat interface.
· JTextArea – Displays the conversation history.
· JTextField – Input field for typing messages.
· JButton – Send button to transmit messages.
3. Review of Related Work
3.1 Traditional Text-Based Chat Applications
Earlier chat systems, such as Telnet-based and command-line chat applications, were text-based and relied on basic socket connections. These applications lacked GUI and were primarily used for learning purposes in networking.
3.2 Advanced GUI-Based Chat Applications
Modern chat applications integrate user-friendly GUIs and provide real-time communication between multiple clients. Examples include:
· WhatsApp & Messenger – Use cloud-based servers for storing and forwarding messages.
· Slack & Microsoft Teams – Use WebSockets and HTTP-based messaging.
· Skype & Zoom – Use VoIP-based messaging for multimedia communication.
These applications implement more advanced features such as encryption (AES, RSA), database storage (MySQL, Firebase), and WebSocket-based communication for better efficiency.
4. Comparison with Existing Systems

	Feature
	Traditional Chat Apps
	Modern Chat Apps
	Our Chat Application

	Technology Used
	Telnet, Command-line
	WebSockets, APIs
	Java Sockets, Multithreading

	GUI Support
	No
	Yes
	Yes (Java Swing)

	Real-time Messaging
	Limited
	Yes
	Yes

	Security
	Low
	High (End-to-End Encryption)
	Basic

	Multi-Client Support
	No
	Yes
	Can be extended

	File Sharing
	No
	Yes
	No (Future Enhancement)

5. Conclusion from Literature Survey
From the study of existing systems, it is observed that:
1. Socket programming with Java is a reliable approach for creating a local chat application.
2. Multithreading is essential for handling multiple client communications efficiently.
3. GUI-based chat applications provide a better user experience than command-line-based messaging.
4. Modern chat apps integrate additional features like security encryption, cloud storage, and multimedia sharing, which can be potential future enhancements.

System Design

1. Introduction
The system design of the Chat Application using Java involves a structured approach to implementing real-time messaging between two clients using a client-server architecture. The design focuses on key components such as network communication, multithreading, GUI design, and message handling.
2. System Architecture
The system follows a three-tier architecture:
1. Client 1 (User Interface & Message Handler)
2. Server (Message Forwarder & Connection Manager)
3. Client 2 (User Interface & Message Handler)
2.1 Architectural Diagram
Below is the high-level architecture of the chat application:
CopyEdit
+----------------+ +----------------+ +----------------+
| Client 1 (C1) | <-----> | Chat Server | <-----> | Client 2 (C2) |
| (Java Swing UI)| | (Java Sockets) | | (Java Swing UI)|
+----------------+ +----------------+ +----------------+
· Client 1 (C1) sends a message → The server receives and processes the message → The server forwards the message to Client 2 (C2).
· The process is bidirectional, allowing both clients to communicate in real-time.

3. System Components
3.1 Chat Server
The server acts as a central hub that manages client connections and relays messages between them.
Responsibilities:
· Establishing a TCP socket connection using ServerSocket.
· Managing multiple clients using multithreading.
· Receiving messages from one client and forwarding them to the other.
Key Design Elements:
· ServerSocket class to accept connections.
· Thread class to handle each client separately.
· BufferedReader and PrintWriter for reading and writing messages.

3.2 Clients (Client 1 & Client 2)
Each client has a Graphical User Interface (GUI) built using Java Swing and is responsible for sending and receiving messages.
Responsibilities:
· Connecting to the server using a Socket connection.
· Sending messages to the server.
· Receiving messages from the server and displaying them in the chat window.
Key Design Elements:
· JFrame for the main window.
· JTextArea for displaying chat messages.
· JTextField for inputting messages.
· JButton for sending messages.
· Socket class for communication with the server.

 	
	

Data Flow diagram

[image:]

Use case Diagram
	
[image: IMG_256]

 Testing and Evaluation

1. Testing Approach
The testing process for the chat application was carried out using a structured approach to ensure functionality, performance, and reliability. The testing methodologies applied include:
· Unit Testing: Each module, such as message sending, message receiving, and connection establishment, was tested independently.
· Integration Testing: The interaction between the server and clients was tested to ensure smooth communication.
· System Testing: The entire chat application was tested under various conditions to verify its end-to-end functionality.
· User Acceptance Testing (UAT): The system was tested in real-time scenarios with multiple users to validate ease of use and responsiveness.
2. Test Cases
Below are some critical test cases executed during the testing phase:
	Test Case ID
	Test Description
	Expected Output
	Actual Output
	Status

	TC-01
	Client 1 sends a message to Client 2
	Message appears on Client 2 with Client 1’s name
	Message successfully received
	✅ Pass

	TC-02
	Client 2 sends a message to Client 1
	Message appears on Client 1 with Client 2’s name
	Message successfully received
	✅ Pass

	TC-03
	Client disconnects from the server
	Client should be removed from the chat
	Successfully disconnected
	✅ Pass

	TC-04
	Server stops while clients are connected
	Clients should receive a disconnection notice
	Clients disconnected
	✅ Pass

	TC-05
	Rapid message sending test
	Messages should be delivered in correct order
	Messages received in order
	✅ Pass

3. Performance Testing
· Load Testing: Tested with multiple concurrent users to check if the system can handle multiple messages simultaneously.
· Response Time: Measured the time taken for messages to be sent and received.
· Network Stability Test: Verified performance under different network conditions (slow internet, disconnections, etc.).
4. Evaluation
· The application successfully meets its primary goal of real-time communication.
· The GUI is user-friendly and allows seamless chat interaction between clients.
· The system effectively handles message transfers with minimal delays.
· Minor improvements can be made in UI enhancements and additional security features like encryption.
5. Future Enhancements
· Implementing end-to-end encryption for message security.
· Adding file-sharing capability.
· Introducing user authentication for secured chat sessions.
· Improving UI aesthetics with more customization options.

Output -:

[image: Screenshot 2025-02-27 165351]

Conclusion

In this paper a new classiﬁcation algorithm was proposed
to improve detecting fake accounts on social networks,
where the SVM trained model decision values were used
to train a NN model, and SVM testing decision values were
used to test the NN model.
To reach our goal we used ”MIB” baseline dataset from
[26] and run it into pre-processing phase where four feature
reduction techniques were used to reduce the feature vector
In this paper a new classiﬁcation algorithm was proposed
to improve detecting fake accounts on social networks,
where the SVM trained model decision values were used
to train a NN model, and SVM testing decision values were
used to test the NN model.
To reach our goal we used ”MIB” baseline dataset from
[26] and run it into pre-processing phase where four feature
reduction techniques were used to reduce the feature vector
In this paper a new classiﬁcation algorithm was proposed
to improve detecting fake accounts on social networks,
where the SVM trained model decision values were used
to train a NN model, and SVM testing decision values were
used to test the NN model.
To reach our goal we used ”MIB” baseline dataset from
[26] and run it into pre-processing phase where four feature
reduction techniques were used to reduce the feature vector
The correlation feature set records a remarkable accuracy
among the other feature selection technique sets, because
correlation technique not only select the best features, but
also removes the redundanc
The correlation feature set records a remarkable accuracy
among the other feature selection technique sets, because
correlation technique not only select the best features, but
also removes the redundanc
The Java-based Chat Application successfully implements real-time communication between multiple clients over a local network. The application utilizes Java Sockets for message transmission and features a Graphical User Interface (GUI) for seamless user interaction. Through a well-structured client-server architecture, messages are efficiently transmitted from one client to another via the server, ensuring smooth and reliable communication.
During the testing and evaluation phase, the system was rigorously tested for functionality, performance, and stability under various conditions. The results demonstrated that the application effectively handles multiple users, maintains message integrity, and operates with minimal delays. The GUI design provides an intuitive and user-friendly experience, making it easy for users to send and receive messages in real time.
While the chat application performs well in its current state, there are potential future enhancements that could improve its usability and security. Features such as end-to-end encryption, file sharing, and user authentication could further enhance its functionality. Additionally, implementing a cloud-based server could expand the application’s scalability, allowing communication beyond a local network.
In conclusion, the project successfully meets its objectives by providing a fully functional, real-time chat system. This application serves as a strong foundation for further development in networking and communication-based projects, demonstrating the practical implementation of Java socket programming and multithreading in real-world applications.

References
Oracle Java Documentation - Oracle Corporation
1. URL: https://docs.oracle.com/en/java/
2. Used for understanding Java socket programming and multithreading concepts.
Java Network Programming (Book) - Elliotte Rusty Harold
1. Publisher: O’Reilly Media
1. Referenced for implementing client-server communication using Java sockets.
Java Swing Tutorial - GeeksforGeeks
1. URL: https://www.geeksforgeeks.org/swing-in-java/
1. Used to design the graphical user interface (GUI) for the chat application.
Multithreading in Java - Tutorialspoint
1. URL: https://www.tutorialspoint.com/java/java_multithreading.htm
1. Used for handling multiple clients concurrently in the server.
Socket Programming in Java - Baeldung
1. URL: https://www.baeldung.com/a-guide-to-java-sockets
1. Used for implementing message transmission using Java networking APIs.
Performance Testing for Network Applications - Research Paper
1. Author: Various Researchers
1. Referenced for testing methodologies applied to ensure application stability and responsiveness.
UML Diagrams and Use Case Modeling - IBM DeveloperWorks
1. URL: https://developer.ibm.com/
1. Used to design the Use Case Diagram and Data Flow Diagram (DFD) for the chat application.

image4.png

image5.png
@B ChattingProject v Version control v Current File v . & B & Q &

O Project v ChatServerGUljava ChatClient1GULjava ChatClient2GUljava HEVAT
v (3 ChattingProject 1 javax.swing.x; a4 ~ v
8 > O.idea 5 =
o0 L} java.awt.x;
> out

v src
ChatClient1GUI
ChatClient2GUI
ChatServerGUI
@ .gitignore
() ChattingProject.iml
> (b External Libraries
> =° scratches and Consoles

java.io.x;

s running__ Watting

Run ChatServerGUI ChatCl

@ ® 3

"C:\Program Files\Java\ lib\idea_rt.jar=50218:

=

14

ChattingProject > src > (© ChatClient2GUI

110 CRLF UTF-8 4spaces of

image1.jpeg

image3.png
users

answers
4—Questio ; T
Crowdworker Response to a R::::(I)r:‘g
Answel Question

Question—— questions

e

Question

“—Rejecting Reaso

Question
Suggestion

3
Add aQuestion

Question

i

Question
Category

Administrator

—» question_categories

